How to Quantify the Chaperone-Like (Anti-Aggregation) Activity?
نویسندگان
چکیده
منابع مشابه
Dependence of the anti-chaperone activity of protein disulphide isomerase on its chaperone activity.
Protein disulphide isomerase (PDI) shows chaperone and anti-chaperone activities in assisting refolding of denatured and reduced lysozyme in redox Hepes buffer, but only chaperone activity in phosphate buffer and redox Hepes buffer containing 0.1 M NaCl. In non-redox Hepes buffer its anti-chaperone activity is very weak. PDI displays its anti-chaperone activity only for those substrates showing...
متن کاملHow to Quantify Student's Regularity?
Studies carried out in classroom-based learning context, have consistently shown a positive relation between students’ conscientiousness and their academic success. We hypothesize that time management and regularity are main constructing blocks of students’ conscientiousness in the context of online education. In online education, despite intuitive arguments supporting on-demand courses as more...
متن کاملRNA chaperone activity of the Sm-like Hfq protein.
The Escherichia coli Sm-like host factor I (Hfq) protein is thought to function in post-transcriptional regulation by modulating the function of small regulatory RNAs. Hfq also interferes with ribosome binding on E. coli ompA messenger RNA, indicating that Hfq also interacts with mRNAs. In this study, we have used stimulation of group I intron splicing in vivo and a modified in vitro toeprintin...
متن کاملProtein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme.
Reduced, denatured lysozyme tends to aggregate at neutral pH, and competition between productive folding and aggregation substantially reduces the efficiency of refolding (Goldberg, M.E., Rudolph, R., and Jaenicke, R. (1991) Biochemistry 30, 2790-2797). Protein disulfide isomerase (PDI), a catalyst of oxidative protein folding, has a variety of effects on the yield of native lysozyme during the...
متن کاملHow to quantify conduits in wood?
Vessels and tracheids represent the most important xylem cells with respect to long distance water transport in plants. Wood anatomical studies frequently provide several quantitative details of these cells, such as vessel diameter, vessel density, vessel element length, and tracheid length, while important information on the three dimensional structure of the hydraulic network is not considere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemistry & Analytical Biochemistry
سال: 2012
ISSN: 2161-1009
DOI: 10.4172/2161-1009.1000e136